This is a list which has been put together by
some CRONUS-EU experts (thanks to all of you!) and me after the CRONUS
summerschool at Harkány, Hungary in 2006. We thought a very small
selection of papers might help real "TCN beginners" to get a feeling for
the method and also to the (so far unsolved) problems related with it. The
list is not at all objective and constantly under progress. See for
yourself if it is helpfull! And for all the "TCN experts" out there: "I am
sorry that your latest very important paper is not on this list!" ;-)
And I added later a few 36Cl application (water/ice) paper.
Reviews
T. E. Cerling,
H. Craig, Geomorphology & in-situ cosmogenic isotopes,
Ann. Rev. Earth Planet. Sci. 22 (1994) 273-317.
J. C. Gosse, F. M. Phillips, Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Science Review 20 (2001)
1475-1560.
M. Ozima, F. A. Podosek, Noble Gas Geochemistry, Chapter 5.5 Crust ?
Cosmogenic Noble Gases, Cambridge University Press (2002) 140-147.
S. Niedermann, Cosmic-Ray-Produced Noble Gases in Terrestrial Rocks:
Dating Tools for Surface Processes, in: Noble Gases in Geochemistry and
Cosmochemistry (ed.: D. Porcelli, C. J. Ballentine, R. Wieler), Reviews in
Mineralogy and Geochemistry 47 (2002) 731-784.
P. Muzikar, D. Elmore, D.E. Granger, Accelerator mass spectrometry in
geologic research, GSA Bulletin 115 (2003) 643-654.
P. R. Bierman,
K. Keedy Nichols, Rock to sediment - slope to sea with 10Be-rates of landscape change, Ann. Rev. Earth Planet. Sci. 32
(2004) 215-225.
F. von Blanckenburg, Control mechanisms of erosion and weathering at
basin scale from cosmogenic nuclides in river sediments, Earth and
Planetary Science Letters 237 (2005) 462-479.
W. Kutschera, Progress in isotope analysis at ultra-trace level by AMS,
International Journal of Mass Spectrometry 242
(2005) 145-160.
S. Ivy-Ochs, M. Schaller, Examining Processes and Rates of Landscape
Change with Cosmogenic Radionuclides, In: Radioactivity in the
Environment, Chapter 6, 16 (2009) 231-294.
A. E. Litherland, X-L. Zhao, W. E. Kieser, Mass spectrometry with
accelerators, Mass Spectrometry Reviews 30
(2011) 1037-1072.
W. Kutschera, Accelerator mass spectrometry: state of the art and
perspectives, Advances in Physics: X 1 (2016)
570-595.
Noble
gases: Analysis
M. D. Kurz, In situ production of terrestrial cosmogenic helium and
some applications to geochronology, Geochim. Cosmochim. Acta 50
(1986) 2855-2862.
S. Niedermann, T. Graf, K. Marti, Mass spectrometric identification of
cosmic-ray produced neon in terrestrial rocks with multiple neon
components, Earth and Planetary Science Letters 118 (1993)
65-73.
S. Niedermann, W. Bach, J. Erzinger, Noble gas evidence for a lower
mantle component in MORBs from the southern East Pacific Rise, Geochim.
Cosmochim. Acta 61 (1997) 2697-2715.
Chemistry
Be-10/Al-26
S. Vogt, U. Herpers, Radiochemical separation techniques for the
determination of long-lived radionuclides in meteorites by means of
accelerator-mass-spectrometry, Fresenius Z. Anal.Chem. 33
(1988) 186-188.
E .T. Brown, J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, E .J.
Brook, Examination of surface exposure ages of Antarctic moraines using
in-situ produced 10Be and 26Al, Geochim.
Cosmochim. Acta 55 (1991) 2269-2283.
C. P. Kohl, K. Nishiizumi, Chemical isolation of quartz for measurement
of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Acta
56 (1992) 3583-3587.
R. G. Ditchburn. N. E. Whitehead, The separation of 10Be
from silicates, 3rd Workshop of the South Pacific
Environmental Radioactivity Association (1994) 4-7. / expanded version
online
S. Merchel, U. Herpers, An Update on Radiochemical Separation
Techniques for the Determination of Long-Lived Radionuclides via
Accelerator Mass Spectrometry, Radiochimica Acta 84 (1999)
215-219.
V.A.
Sulaymonova, M.C. Fuchs, R. Gloaguen, R. Möckel, S. Merchel, M. Rudolph,
M.R. Krbetschek, Feldspar flotation as a quartz-purification method in
cosmogenic nuclide dating: A case study of fluvial sediments from the
Pamir, MethodsX 5 (2018) 717-726.
S. Merchel, S. Beutner, T. Opel, G. Rugel, A. Scharf, C. Tiessen, S.
Weiß, S. Wetterich, Attempts to understand potential deficiencies in
chemical procedures for AMS, Nucl. Instr. and Meth. in Phys. Res. B
456 (2019) 186-192.
S. Merchel, A. Gärtner, S. Beutner, B. Bookhagen, A. Chabilan, Attempts
to understand potential deficiencies in chemical procedures for AMS:
Cleaning and dissolving quartz for 10Be and 26Al
analysis, Nucl. Instr. and Meth. in Phys. Res. B 455
(2019) 293-299.
Chemistry Cl-36
S. Vogt, U. Herpers, Radiochemical separation techniques for the
determination of long-lived radionuclides in meteorites by means of
accelerator-mass-spectrometry, Fresenius Z. Anal. Chem. 33
(1988) 186-188.
J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic
chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60
(1996) 679-692. / expanded version
online
S. Merchel,
U. Herpers, An Update on Radiochemical Separation Techniques for the
Determination of Long-Lived Radionuclides via Accelerator Mass
Spectrometry, Radiochim. Acta 84 (1999) 215-219.
S. Jiang, Y. Lin, H. Zhang, Improvement of the sample preparation
method for AMS measurement of 36Cl in natural environment,
Nuclear Instruments and Methods in Physics Research B223-224
(2004) 318-322.
S. Merchel,
R. Braucher, V. Alfimov, M. Bichler, D.L. Bourlès, J.M. Reitner, The
potential of historic rock avalanches and man-made structures as
chlorine-36 production rate calibration sites, Quat. Geochron.
18 (2013) 54-62.
Accelerator mass
spectrometry (AMS)
R. C. Finkel, M. Suter, AMS in the Earth Sciences: Technique and
Applications, Advances in Analytical Geochemistry 1 (1993)
1-114.
C. Tuniz, J. R. Bird, D. Fink, G. F. Herzog, Accelerator Mass
Spectrometry, CRC Press (1998).
S. Merchel,
M. Arnold, G. Aumaître, L. Benedetti, D. L. Bourlès, R. Braucher, V.
Alfimov, S. P. H. T. Freeman, P. Steier, A. Wallner, Towards more precise
10Be and 36Cl data from measurements at the 10-14
level: Influence of sample preparation, Nucl. Instr. and Meth. in
Phys. Res. B266 (2008) 4921-4926.
R. Golser,
W. Kutschera, Twenty Years of VERA: Toward a Universal Facility for
Accelerator Mass Spectrometry, Nuclear Physics News 27
(2017) 29-34.
Production rates
K. Nishiizumi, E. L. Winterer, C. P. Kohl, J. Klein, R. Middleton, D.
Lal, J. R. Arnold, Cosmic ray production rates of 10Be and
26Al in quartz from glacially polished rocks, Journal of
Geophysical Research 94 (1989) 17907-17915.
J. Masarik, R. C. Reedy, Terrestrial cosmogenic-nuclide production
systematics calculated from numerical simulations, Earth and Planetary
Science Letters 136 (1995) 381-395.
J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic
chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60
(1996) 679-692.
J. O. H. Stone, J. M. Evans, L. K. Fifield, G. L. Allan, R. G.
Cresswell, Cosmogenic chlorine-36 production in calcite from muons,
Geochim. Cosmochim. Acta 62 (1998) 433-454.
S. Niedermann, The 21Ne production rate in quartz revisited,
Earth and Planetary Science Letters 181 (2000) 361-364.
T. J. Dunai, J. R. Wijbrans, Long-term cosmogenic 3He
production rates (152 ka-1.35 Ma) from 40Ar/39Ar
dated basalt flows at 29°N latitude, Earth and Planetary Science
Letters 176 (2000) 147-156.
F. M. Phillips, W. D. Stone, J. T. Fabryka-Martin, An improved approach
to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere
interface, Chemical Geology 175 (2001) 689-701.
J. M. Licciardi, M. D. Kurz, J.M. Curtice, Cosmogenic 3He
production rates from Holocene lava flows in Iceland, Earth and
Planetary Science Letters 246 (2006) 251-264.
J. Masarik,
K. J. Kim, R. C. Reedy, Numerical simulation of in situ production of
terrestrial cosmogenic nuclides, Nucl. Instr. and Meth. in Phys. Res.
B259 (2007) 642-645.
J.M.
Licciardi, C.L. Denoncourt, R.C. Finkel, Cosmogenic 36Cl
production rates from Ca spallation in Iceland, Earth Planet. Sci.
Lett. 267 (2008) 365-377.
I.
Schimmelpfennig, Sources of in-situ 36Cl in basaltic rocks.
Implications for calibration of production rates, Quaternary
Geochronology 4 (2009) 441-461.
R.
Braucher, S. Merchel, J. Borgomano, D.L. Bourlès, Production of cosmogenic
radionuclides at great depth: A multi element approach, Earth Planet.
Sci. Lett. 309 (2011) 1-9.
Nuclear reactions/geometry
R.
Braucher, D. Bourlès, S. Merchel, J. Vidal Romani, D. Fernadez-Mosquera,
K. Marty, L. Léanni, F. Chauvet, M. Arnold, G. Aumaître, K. Keddadouche,
Determination of muon attenuation lengths in depth profiles from in situ
produced cosmogenic nuclides, Nucl. Instr. and Meth. in Phys. Res.
B 294 (2013) 484-490.
B. Heisinger, D. Lal, A. J. T. Jull, P. Kubik, S. Ivy-Ochs, S.
Neumaier, K. Knie, V. Lazarev, E. Nolte, Production of selected cosmogenic
radionuclides by muons: 1. Fast muons, Earth and Planetary Science
Letters 200 (2002) 345-355.
B. Heisinger, D. Lal, A. J. T. Jull, P. Kubik, S. Ivy-Ochs, K. Knie, E.
Nolte, Production of selected cosmogenic radionuclides by muons: 2.
Capture of negative muons, Earth and Planetary Science Letters
200 (2002) 357-369.
J. Masarik, R. Wieler, Production rates of cosmogenic nuclides in
boulders, Earth and Planetary Science Letters 216 (2003)
201-208.
Scaling factors
D. Lal, Cosmic ray labeling of ersosion surfaces: in situ nuclide
production rates and erosion models, Earth and Planetary Science
Letters 104 (1991) 424-439.
J. O. Stone, Air pressure and cosmogenic isotope production, Journal
of Geophysical Research 105 (2000) 23753-23759.
T. J. Dunai, Scaling factors for production rates of in situ produced
cosmogenic nuclides: a critical re-evaluation, Earth and Planetary
Science Letters 176 (2000) 157-169. See also comments by
Desilets et al. 188 (2001) 283-287 and reply by Dunai
188 (2001) 289-298.
T. J. Dunai, Influence of secular variation of the geomagnetic field on
production rates of in situ produced cosmogenic nuclides, Earth and
Planetary Science Letters 193 (2001) 197-212.
J. Masarik, M. Frank, J. M. Sch?er, R. Wieler, Correction of in situ
cosmogenic nuclide production rates for geomagnetic field intensity
variation during the past 800,000 years, Geochim. Cosmochim. Acta
65 (2001) 2995-3003.
D. Desilets, M. Zreda, Spatial and temporal distribution of secondary
cosmic-ray nucleon intensities and applications to in situ cosmogenic
dating, Earth and Planetary Science Letters 206 (2003)
21-42.
J. S. Pigati, N. A. Lifton, Geomagnetic effects on time-integrated
cosmogenic nuclide production with emphasis on in situ 14C and
10Be, Earth and Planetary Science Letters 226
(2004) 193-205.
N. A. Lifton, J. W. Bieber, J. M. Clem, M. L. Duldig, P. Evenson, J. E.
Humble, R. Pyle, Addressing solar modulation and long-term uncertainties
in scaling secondary cosmic rays for in situ cosmogenic nuclide
applications, Earth and Planetary Science Letters 239 (2005)
140-161.
Related topics maybe useful
I. McDougall, T. M. Harrison, Geochronology and Thermochronology by the
40Ar/39Ar method, Oxford University Press
(1999).
Groundwater
dating
IAEA - Isotope methods for dating old groundwater, Vienna:
International Atomic Energy Agency, 2013, ISBN 978–92–0–137210–9, 379
pages.
online-publication
(pdf)
J.A. Corcho Alvarado, R. Purtschert, K. Hinsby, L. Troldborg, M. Hofer,
R. Kipfer, W. Aeschbach-Hertig, H. Arno-Synal, 36Cl in modern
groundwater dated by a multi-tracer approach (3H/3He,
SF6, CFC-12 and 85Kr): a case study in quaternary
sand aquifers in the Odense Pilot River Basin, Denmark, Applied
Geochemistry 20 (2005) 599-609.
S. N. Davis, S. Moysey, L. DeWayne Cecil, M. Zreda, Chlorine-36 in
groundwater of the United States: empirical data, Hydrogeology Journal
11 (2003) 217-227.
V. Lavastre, C. Le Gal La Salle, J. L. Michelot, S. Giannesini, L.
Benedetti, J. Lancelot, B..Lavielle, M. Massault, B. Thomas, E. Gilabert,
D. Bourlès, N. Clauer, P. Agrinier, Establishing constraints on
groundwater ages with 36Cl, 14C, 3H, and
noble gases: A case study in the eastern Paris basin, France, Applied
Geochemistry 25 (2010) 123-142 (and erratum).
M.J. Lenahan, D.M. Kirste, D.C. McPhail, L.K. Fifield, Cl- AND 36Cl
DISTRIBUTION IN A SALINE AQUIFER SYSTEM: CENTRAL NEW SOUTH WALES,
AUSTRALIA, In: Roach I.C. ed. 2005. Regolith 2005 – Ten Years of CRC
LEME. CRC LEME (2005) 187-190.
C. Münsterer, J. Fohlmeister, M. Christl, A. Schröder-Ritzrau, V.
Alfimov, S. Ivy-Ochs, A. Wackerbarth, A. Mangini, Cosmogenic 36Cl
in karst waters from Bunker Cave North Western Germany – A tool to derive
local evapotranspiration?, Geochim. Cosmochim. Acta 86
(2012) 138-149.
E. Nolte, P. Krauthan, G. Korschinek, P. Maloszewski, P. Fritz, M.
Wolf, Measurements and interpretations of 36Cl in groundwater,
Milk River aquifer, Alberta, Canada, Applied Geochemistry 6
(1991) 435-445.
J. Park, C.M. Bethke, T. Torgersen, T.M. Johnson, Transport modeling
applied to the interpretation of groundwater 36Cl age, WATER
RESOURCES RESEARCH 38 (2002) 1043.
C. Wilske, A. Suckow, U. Mallast, C. Meier, S. Merchel, B. Merkel, S.
Pavetich, T. Rödiger, G. Rugel, A. Sachse, S Weise, C. Siebert, A
multi-environmental tracer study to determine groundwater residence times
and recharge in a structurally complex multi-aquifer system, Hydrology
and Earth System Sciences 24 (2020) 249-267.
online-publication
Cl-36 in ice and
snow
R.J. Delmas, J. Beer, H.-A. Synal, R. Muscheler, J.-R. Petit, M.
Pourchet, Bombtest 36Cl measurements in Vostok snow
(Antarctica) and the use of 36Cl as a dating tool for deep ice
cores, Tellus B 56 (2004) 492-498.
D. Elmore, L. E. Tubbs, D. Newman, X. Z. Ma, R. Finkel, K. Nishiizumi,
J. Beer, H. Oeschger, M. Andree, 36Cl bomb pulse measured in a
shallow ice core from Dye 3, Greenland, Nature 300 (1982)
735-737.
S. Pivot, M. Baroni, E. Bard, X. Giraud, ASTER Team, A Comparison of
36Cl Nuclear Bomb Inputs Deposited in Snow From Vostok and
Talos Dome, Antarctica, Using the 36Cl/Cl− ratio, Journal of
Geophysical Research:Atmospheres 124 (2019) 10,973–10,988.
H.-A. Synal, J. Beer, G. Bonani, M. Suter, W. Wölfli, Atmospheric
transport of bomb-produced 36Cl, Nucl. Instr. and Meth. in
Phys. Res. B 52 (1990) 483-488.